

0143-7208(95)00082-8

Synthesis of Furonaphthalimides as Novel DNA Intercalators

Zhi-Fu Tao, Xuhong Qian* & Jun Tang

Institute of Pesticides & Pharmaceuticals, East China University of Science & Technology, PO Box 544, Shanghai 200237, People's Republic of China

(Received 31 July 1995; accepted 4 September 1995)

ABSTRACT

Two new furonaphthalimides have been synthesized, and their absorption and fluorescence spectra recorded. The possibilities of these furonaphthalimides being utilized as novel intercalating DNA cleavers is discussed.

1 INTRODUCTION

1,8-Naphthalimide derivatives exhibit strong fluorescence,¹⁻⁴ and for this reason they have versatile applications in many fields, e.g. for hypoxic cells in solid tumours,^{5,6} as solar energy collectors, as electro-optically sensitive materials,^{7,8} for laser activity,^{9,10} and as fluorescent brightening agents for polymeric materials.¹¹ More recently, 1,8-naphthalimide derivatives have been studied as DNA intercalators,¹²⁻¹⁴ photo-induced DNA cleavers¹⁵⁻¹⁷ and chemiluminescent probes for singlet oxygen.¹⁸ We report here the synthesis of two new furonaphthalimides with more efficient DNA-binding activities compared with previously reported *N*-methyl analogues.^{13,14}

2 RESULTS AND DISCUSSION

The synthetic methodology for the preparation of the furonaphthalimides is shown in Scheme 1. The starting material, 4-hydroxy-1,8-naphthalic anhydride 1, was prepared from acenaphthene in three steps. Compound 2 was obtained in 57% yield through the condensation of compound 1 with 3-chloro-

^{*}Corresponding author.

Scheme 1

d: CH₃CH₂OH, Me₂C=CHCH₂NH₂, ref. 4h

2-butanone; the IR spectrum confirmed the absence of an OH group and the ¹H NMR spectrum showed peaks at $\delta = 1.71$ (d,J=7·1 Hz), 2·32 (s) and 5·32 (q,J=7·1 Hz) corresponding to the 2'-oxobuta-3'-yl group. The cyclization of compound 2 in the presence of polyphosphoric acid (PPA) gave the intermediate compound 3 in 44% yield. The furonaphthalimides 4 and 5 were readily obtained in high yield by the condensation of compound 3 with the appropriate amine, and their structures were fully characterized. Compounds 4 and 5 showed a hypsochromic shift in their UV-absorption

Compound number	$UV \ \lambda_{max} \ (log \ \epsilon)$	$rac{FL}{\lambda_{max}(oldsymbol{\phi})}$	Ref.
1	343(3-86)	484-6(0-105)	
5	345(4.01)	482.5(0.099)	
6	371.8(3.74)	446-2(0-11)	14
7	390.0(4.21)	471.8(0.10)	18

TABLE 1
UV and Fluorescence Spectra Data of Furonaphthalimides

maxima, and a bathochromic shift in their fluorescence maxima, relative to compounds 6 and 7 (as shown in Table 1).

The evaluation of the DNA-intercalating activities of the furonaphthalimides 4 and 6 by a fluorescence quenching technique¹⁹ shows that compound 4 intercalates with DNA more efficiently than compound 6, which indicates that allylic substituents play an important role in DNA intercalations. Further biological studies of compounds 4 and 5 are being carried out.

Compared with compounds 6 and 7, the furonaphthalimides 4 and 5 have two advantages; namely (1) allylic substituents on the N-atom can promote the DNA-intercalating efficiency; (2) since the [2+2] photoaddition of the furan site of some photosensitizers (for instance, furocoumarins) and DNA-ajacent pyrimidine bases generates ${}^{1}O_{2}$, 20 it is plausible that furonanphthalimide hydroperoxides are produced *in situ* when compound 5 is treated with DNA under irradiation conditions (Scheme 2). Thus, a novel intercalating DNA cleaver might be obtained. 22

3 EXPERIMENTAL

3.1 General

Melting points were taken on a digital melting point apparatus made in Shanghai. Infrared spectra were recorded on a IR-7650 made in Shanghai, mass spectra on a Hitachi M 80, ¹H NMR on a Brucker Wp-100sy (100 MHz)

Furonapthalimide 5
$$\frac{O_2/hv}{DNA}$$
 1O_2

Furonapthalimide 5 O_2/hv
 O_2/hv
 O_3/hv
 O_4/hv
 O_4/hv

Scheme 2

or on a Brucker AM-300 (300 MHz) using CDCl₃ or TMS as internal standard. Combustion analysis for elemental composition was carried out on an Italy MOD.1106 analyser. Absorption spectra were measured in absolute ethanol on a Shimadzu UV-265 and fluorescence spectra on a Perkin Elmer LS 50 using quinine sulphate in sulphuric acid as quantum yield standard.

3.2 Synthesis of 4-[(2'-oxobutan-3'-yl)oxy]-1,8-naphthalic anhydride(2)

A mixture of 4-hydroxy-1,8-naphthalic anhydride 1 (2 g), 3-chloro-2-butanone (2ml), K_2CO_3 (2 g), and butanone (60 ml) was refluxed for 3 days; after removal of solvent, 10% hydrochloric acid was added and the resulting precipitate was filtered, washed with water and a little butanone, and dried to give compound 2 in 57% yield. An analytical sample was obtained by column chromatography using a mixture of petroleum ether and ethyl acetate as eluent. M.p. 180–181°C. IR(KBr): 1770, 1730(br), 1595, 1580, 1405, 1265, 1020, 770, 755, 675 cm⁻¹. ¹H NMR (CD₃COCD₃): δ = 1·71, 3H, d, J = 7·1 Hz, 4'-CH₃, 2·32, 3H, s, 1'-CH₃, 5·32, 1H, J = 7·1 Hz, 3'-CH, 7·11, 1H, 5-H, d, J = 7·8 Hz, 7.84, 1H, 8-H, dd, J_{XA} = 7·2 Hz, J_{XB} = 8·6 Hz, 8·49, 1H, 7-H, d, J_{AX} = 7·2 Hz, 8·57, 1H, 4-H, d, J=7·8, Hz, 8·77, 1H, 9-H, d, J_{BX} = 8·6 Hz.

MS(El 70eV): m/e(%) 284(40·8)[M⁺], 215(51·5), 197(84·5)[M⁺-OCH(CH₃) COCH₃], 170(100). $C_{16}H_{12}O_5$: Calcd, C, 67·60, H, 4·25. Found, C, 67·86, H, 4·38.

3.3 Synthesis of 2,3-dimethylfuro[2,3-b][1]naphtho[4a,7a-e,f]pyran-5,7-dione(3)

A mixture of compound 2 (1.2 g) and polyphosphoric acid (30 ml) was stirred for 4.5 h at 120°C; the reaction mixture was poured into ice water

and the resulting precipitate was filtered and washed with water. The filter cake was dissolved in acetone and chromatographed using a mixture of petroleum ether and ethyl acetate as eluent to give 3 as yellow needles in 44% yield, m.p. 214–216°C.

IR(KBr): 2920, 2860, 1770, 1730, 1580, 1465, 1300, 1030, 1015, 760 cm⁻¹. ¹H NMR(CF₃COOD): δ =1·84, 3H, s, 3-CH₃, 2·08, 3H, s, 2-CH₃, 7·42, 1H, 9-H, dd, J_{XA} = 9·5 Hz, 8·18, 1H, 10-H, d, J_{AX} = 9·5 Hz, 8·32, 1H, 8-H, d, J_{BX} = 7·9 Hz, 8·37, 1H, 4-H, s. MS(EI 70eV): m/e(%) 267(17·9)[M⁺ + 1], 265(100)[M⁺-1], 222(95·9)M⁺-CO]. $C_{16}H_{10}O_4$: Calcd, C,72·18, H, 3·78. Found, C,72·03, H,3·70.

3.4 Synthesis of 6-allyl-2,3-dimethylfuro[2,3-b][1]naphtho[4a,7a-e,f] pyrida-5,7-dione(4)

A mixture of compound 3 (0.5 g), allylamine (1 ml), and methanol (50 ml) was refluxed for 6 h. After removal of solvent and recrystallization from ethanol, yellow needles of 4 were obtained in 87% yield.; m.p. 172-174°C.

IR(KBr): 2915, 2845, 1690, 1660, 1635, 1620, 1585, 1570, 1455, 1370, 1265, 1220, 1170, 780, 690 cm⁻¹. ¹H NMR(CD₃COCD₃): δ =2·33, 3H, s, 3-CH₃, 2·57, 3H, s, 2-CH₃, 4·76, 2H, d, J = 4·8 Hz, N-CH₂, 5·24, 2H, m = CH₂, 5·86–6·24, 1H, m, 2'-CH=, 7·90, 1H, 9-H, dd, J_{XA} = 8·6 Hz, J_{XB} =7·1 Hz, 8·48, 1H, 10-H, d, J_{AX} =8·6 Hz, 8·53, 1H, 8-H, d, J_{BX} =7·1 Hz, 8·56, 1H, 4-H, s.

UV (ethanol): λ_{max} (log ϵ)=207 nm (4·23), 233(4·39), 272(4·40), 343 (3·86); Fluorescence (ethanol): λ^{fl} =484·6 nm, ϕ^{fl} =0·105. MS(El 70eV): m/e(%) 306(12·7)[M⁺ + 1], 305(55·0)[M⁺], 290(100)[M⁺-CH₃]. C₁₉H₁₅NO₃: Calcd, C,74·74, H,4·95, N,4·59. Found, C,74·78, H,4·95, N,4·61.

3.5 Synthesis of 2,3-dimethyl-6-(3',3'-dimethylallyl)furo[2,3-b][1]naphtho[4a, 7a-e,f] pyrida-5,7-dione(5)

A mixture of compound 3 (60 mg) and 3,3-dimethylallylamine (0·113 g) in 10 ml of ethanol was refluxed for 4 h. After cooling, filtering and drying, the yellow coloured 5 was obtained in 80% yield; m.p. 177·5–177·8°C (ethanol).

IR(KBr): 2960, 2910, 2850, 1690, 1650, 1640, 1620, 1590, 1570, 1455, 1365, 1350, 1320, 1260, 1225, 1160, 850, 800, 790 cm⁻¹.

¹H NMR (CD₃COCD₃): δ = 1·71, 3H, s, 3'-CH₃, 1·90, 3H, s, 3'-CH₃, 2·37, 3H, s, 3-CH₃, 2·58, 3H, s, 2-CH₃, 4·76, 2H, d, J = 7·0 Hz, N-CH₂, 5·35, 1H, t, J = 7·0 Hz, 2'-CH=, 7·94, 1H, 9-H, dd, J_{XA} = 8·1 Hz, J_{XB} = 7·5 Hz, 8.53, 1H, 10-H, t, J_{XB} = 7·5 Hz, J_{BA} = 1·0 Hz, 8·62, 1H, 8-H, t, J_{XA} = 8·10 Hz, J_{AB} = 1·0 Hz, 8·70 1H, 4-H, s. UV (ethanol): λ _{max} (log ϵ) = 207 nm (4·31),

240 (4·48), 273 (4·51), 345 (4·01); Fluorescence (ethanol): $\lambda^{\text{fl}} = 482.5 \text{ nm}$; $\phi^{\text{fl}} = 0.099$. MS(El 70eV): m/e(%) 334(11·5)[M⁺ + 1], 333(44·8)[M⁺], 265(100), 290(50·5) C₂₁H₁₉NO₃: Calcd C,75·66, H,5·74, N,4·20. Found, C,75·37, H,5·79, N,4·01.

ACKNOWLEDGEMENT

The authors thank the State Education Commission of China for their financial support of this work.

REFERENCES

- 1. Peters, A. T. & Bide, M. J., Dyes and Pigments, 6 (1985) 349.
- Peters, A. T., Grayshan, H. P. & Kadhim, A. M., J. Heterocyclic Chem. 11 (1974) 11.
- 3. Peters, A. T. & Grayshan, P. H., J. Appl. Chem. Biotechnol., 24 (1974) 121.
- 4. Grabchev, I., Meallier, P., Konstantinova, T. & Popova, M., Dyes and Pigments, 28 (1995) 41.
- 5. Middleton, R. W. & Parrick, J., J Heterocyclic Chem., 22 (1985) 1567.
- 6. Middleton, R. W., Parrick, J., Clarke, E. D. & Wardman, P., J. Heterocyclic Chem., 23 (1986) 849.
- 7. Qian, X., Zhu, Z. & Chen, K., Dyes and Pigments, 11 (1989) 13.
- 8. Qian, X, Zhu, Z., Chen, K., Yin, Q. & Zhu, G., Mater. Chem. Phys., 23 (1989)
- 9. Pardo, A., Poyato, J. M. L., Camacho, J. J., Brana, M. F. & Castellano, J. M., J. Photochem., 36 (1986) 323.
- 10. Pardo, A., Matin, E., Poyato, J. M. L., Camacho, J. J., Brana, M. F. & Castellano, J. M., J. Photochem. Photobiol., A: Chem., 41 (1987) 69.
- 11. Grabtchev, I. & Philipova, Tz., Dyes and Pigments, 27 (1995) 321.
- 12. Stevenson, K. A., Yen, S., Yang, N., Boykin, D. W. & Wilson, W. D., J. Med. Chem., 27 (1984) 1677.
- 13. Qian, X., Proc. 1st Young Scientists of China Association of Science and Technology. China Press of Science and Technology, Beijing, China, 1992, p. 252.
- 14. Qian, X., Tang, J., Zhang, J. & Zhang, Y., Dyes and Pigments, 25 (1994) 109.
- 15. Saito, I., Takayama, M. & Sakurai, T., J. Am. Chem. Soc., 116 (1994) 2653.
- 16. Matsugo, S., Nakano, S., Adachi, K. & Konishi, T., J. Chem. Soc., Chem. Commun., (1995) 311.
- 17. Saito, I. & Takayama, M., J. Am. Chem. Soc., 117 (1995) 5590.
- 18. Adam, W., Qian, X. & Saha-Moller, C. R., Tetrahedron, 49 (1993) 417.
- 19. Gupta, M. & All, R., J. Biochem., 95 (1984) 1253.
- 20. Dall'Acqua, F. & Caffieri, S., Photomedicine and Photobiology, 10 (1988).
- 21. Adam, W., Cadet, J., Dall'Acqua, F., Epe, B., Ramaiah, D. & Saha-Moller, C. R., Angew. Chem., Int. Edn. Engl., 34 (1995) 107.
- 22. Saito, I., Takayama, M., Matsuura T., Mutsugo, S. & Kwanishi, S., J. Am. Chem. Soc., 112 (1990) 883.